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Neutron scattering and thermodynamic 
evidence for emergent photons and 
fractionalization in a pyrochlore spin ice
 

Bin Gao    1,10, Félix Desrochers    2,10, David W. Tam3,10, Diana M. Kirschbaum    4,10, 
Paul Steffens    5, Arno Hiess    5,6, Duy Ha Nguyen4, Yixi Su    7, 
Sang-Wook Cheong    8, Silke Paschen    4 , Yong Baek Kim    2  & 
Pengcheng Dai    1,9 

The three-dimensional pyrochlore lattice of corner-sharing tetrahedra can 
host a quantum spin ice, a quantum analogue of the classical spin ice found 
in other pyrochlore compounds. This state can manifest a quantum spin 
liquid, and indeed, these compounds are predicted to have emergent gauge 
fields that produce linearly dispersing collective magnetic excitations near 
zero energy, in addition to the presence of higher-energy spinon excitations. 
Here we use polarized neutron scattering experiments on single crystals 
of the Ce2Zr2O7 pyrochlore. We find evidence for magnetic excitations 
near zero energy, in addition to signatures of spinons at higher energies. 
Furthermore, we perform heat capacity measurements and find behaviour 
consistent with the cubic-in-temperature dependence expected for linearly 
dispersing gapless bosonic modes. Comparing the observed magnetic 
excitations with theoretical calculations, we argue that Ce2Zr2O7 is a strong 
candidate for a dipolar–octupolar quantum spin ice with dominant dipolar 
Ising interactions.

Quantum spin liquids (QSLs) are phases of interacting quantum spins 
in a crystalline solid with long-range entangled ground states and no 
magnetic order down to zero temperature1–5. Although Anderson pro-
posed their existence for a two-dimensional triangular lattice in 1973 
(ref. 6), the conclusive identification of a QSL material and its associated 
microscopic Hamiltonian is still lacking1–5, despite the relevance to 
high-transition-temperature superconductivity7,8. For the spin S = 1/2 
two-dimensional honeycomb lattice, Kitaev’s exactly solvable model 
with bond-dependent nearest-neighbour interactions has a QSL ground 
state, where the excitations are itinerant Majorana fermions and static 
Z2 fluxes relevant for fault-tolerant quantum computation9,10. Despite 

intensive efforts, there is currently no conclusive identification of a 
Kitaev QSL material11. For S = 1/2 two-dimensional kagome and trian-
gular lattice magnets, although there are many reports of fractional-
ized excitations consistent with a spinon Fermi surface QSL12–19, the 
microscopic Hamiltonian is difficult to simulate13,20,21.

In three-dimensional (3D) rare-earth pyrochlore magnets with a 
large effective moment, Ising-like spins decorating the corner-sharing 
tetrahedra (Fig. 1a) form a constrained paramagnet in which the system 
is energetically restricted to the degenerate ‘two-in–two-out’ classical 
spin ice (CSI) states, analogous to the ‘two-near–two-far’ rules of the 
covalent 2H+–O2– bonding distances in water ice22,23. This set of local 
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and gapped topological defects known as visons25. The experimental 
discovery of a material realization of QSI is an outstanding problem 
that—despite encouraging results34–37—has yet to receive any defini-
tive evidence. Recently, 3D pyrochlore systems Ce2M2O7 (M = Sn, Zr or 
Hf; Extended Data Fig. 1) have been suggested as effective S = 1/2 QSI 
candidates38–45, but there has been no conclusive evidence of quasielastic 
magnetic scattering signals from photons, a key signature for a QSI.

Here we use polarized neutron scattering experiments and low- 
temperature specific heat measurements on single crystals of Ce2Zr2O7 
and show that all the results are consistent with the presence of mag-
netic excitations near zero energy at 33–50 mK in addition to signa-
tures of spinons at higher energies, and the heat capacity data are 
consistent with the T3 dependence expected for linearly dispersing 
gapless bosonic modes26,30,33. By comparing the energy (E), momentum 
transfer (Q) and polarization dependencies of magnetic excitations 
with theoretical calculations46–52, we conclude that Ce2Zr2O7 is a strong 
candidate for a dipolar–octupolar π-flux QSI50 with dominant dipolar 
Ising interactions.

Experimental and theoretical results
Ce3+ (4f1, 2F5/2) magnetically active ions in the crystal field of eight  
oxygen anions of Ce2Zr2O7 form an effective S = 1/2 Kramers doublet. 

constraints, known as the ice rules, is imposed on every tetrahedron 
and can be mapped to a divergence-less coarse-grained spin field ℰ. 
Defect tetrahedra in which the local ice rules are violated then behave 
as mobile charged excitations interacting electrostatically through 
this emergent field. This structure leads to ‘pinch points’ in the momen-
tum transfer Q dependence of the spin–spin correlation function S(Q). 
The pinch points can be revealed in polarized neutron scattering experi-
ments with neutrons polarized along the z axis perpendicular to the 
(h, h, 0) × (0, 0, l) scattering plane22–24 (Fig. 1c). These results showcase 
the usefulness of polarized neutron scattering in unveiling exotic 
emergent physics and its connection to microscopic descriptions.

For S = 1/2 pyrochlore magnets in which quantum effects are impor-
tant, the CSI is theoretically predicted to be promoted to a quantum spin 
ice (QSI)25, a QSL in which the low-energy dynamics of the two-in–two-out 
manifold is described by compact quantum electrodynamics26–32. This 
implies that a QSI hosts gapless excitations, dubbed photons, with a 
linear dispersion that describes coherent fluctuations within the spin-ice 
manifold (Fig. 1e), in addition to the spinons at higher energies25,26,30. 
These linearly dispersing gapless bosonic modes should be detect-
able by a characteristic T3 contribution to the low-temperature heat 
capacity26,30,33. A QSI also supports massive S = 1/2 spinon excitations 
that are the quantum analogue of the defect tetrahedra in CSI (Fig. 1f) 
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Fig. 1 | Summary of crystal structure, Brillouin zone, phase diagram, expected 
ex                                                                                                                                                               p                                                          e          r          i   m   ental s    i  g   n a   t  u res a  n d e  x c  it  a t ions o  f C  e   2  Z r  2   O 7. a   , N  e t  wo  rk o  f c  o r  ne  r -  sh -
aring tetrahedra formed by the magnetic Ce3+ ions in Ce2Zr2O7. The low-energy 
Kramers doublet of the Ce3+ ion can be modelled by the pseudospins-1/2 
τ⃗ = (τx, τy, τz) that have octupolar and dipolar magnetic charge densities.  

b, (h, h, l) scattering plane. The dashed black lines mark the zone boundary; the 
blue boxes, the momentum transfer of the energy scans reported in Fig. 2; the 
green dashed lines, the momenta along which the elastic scans presented in  
Fig. 3 were measured; and the red dotted lines, the momentum cuts along which 
both elastic and inelastic scans presented in Figs. 3 and 4 were measured.  
c, Scattering geometry of polarized neutron scattering experiment in the (h, h, l) 
plane. Incident neutron beams are polarized along the x, y and z directions, 
corresponding to directions along the momentum transfer Q, perpendicular to Q 
but in the (h, h, l) plane, and perpendicular to the scattering plane, respectively. 
For this configuration, the SF cross-section σSFx (Q) ≈ Mz +My, where My and Mz 
are magnetic fluctuations along the local y and z directions, respectively, for 

systems with large magnetic moments. Correspondingly, σSFz (Q) ≈ My and 
σNSF
z (Q) ≈ Mz. d, Schematic of the phase diagram for the nearest-neighbour XYZ 

model63 in the experimentally relevant quadrants for Ce2Zr2O7. The labels X-AIAO, 
Y-AIAO and Z-AIAO represent all-in–all-out magnetic order along the local x, y and 
z axes, respectively. The red square denotes the parameterization from ref. 49, 
and the blue triangle and blue star are the ones from ref. 54. For the parameters in 
π-D-QSI, the photon can be observed in the neutron scattering cross-section, but 
it cannot be observed for parameters in the π-O-QSI phase. In both cases, the 
spinons produce a small quasielastic peak from thermal excitations and three 
inelastic peaks of decreasing intensities. e, Tunnelling process between different 
spin-ice configurations that form the coherent photon excitation. A vector 
pointing out of an up tetrahedron (in blue) is a representation of a positive 
pseudospin component for the one with the largest coupling |S∥ = +1/2〉 and a 
vector pointing out is |S∥ = −1/2〉. f, When flipping a spin, one violates the ice rules 
and creates spinons that live at the centre of the neighboring tetrahedra and are 
sources of the emergent electric field.
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Fig. 2 | Energy scans of the polarized neutron scattering cross-sections at 
different momentum positions for Ce2Zr2O7. a–c, Neutron scattering 
cross-sections for different polarizations as a function of energy at Q = (0, 0, 1) (X 
point; a), Q = (3/4, 3/4, 0) (K point; b) and Q = (1, 1, 0) (c). d–f, Total magnetic 
scattering Mz + My for samples 1 and 2 at X point (d), sample 1 at K point (e) and 
sample 1 at Q = (1, 1, 0) (f). g–i, Theoretical fit to Mz + My using GMFT for the 
spinons and Gaussian quantum electrodynamics for the photons at X point (g),  
K point (h) and Q = (1, 1, 0) (i). j–l, Polarization anisotropy Mz − My and theoretical 
prediction for the spinon and photon contributions to it at X point (j), K point (k) 
and Q = (1, 1, 0) (l). m, The raw NSF and SF neutron scattering cross-sections for 
sample 2 at X point and 33 mK. n, Total magnetic scattering Mz + My for sample 2  
at X point. Theoretical fit to Mz + My using GMFT for the spinons and Gaussian 
quantum electrodynamics for the photons at X point. o, Polarization anisotropy 
Mz − My and theoretical prediction for the spinon and photon contributions to it 
at Q = (0, 0, 1). A direct comparison between samples 1 and 2 with the same energy 

resolution is shown in d. The black line in n is the experimental resolution 
obtained by fitting a Gaussian to σNSFx (E). The theoretical results were produced 
using 𝒥𝒥𝓍𝓍 = 0.076 meV, (𝒥𝒥y +𝒥𝒥z)/4 = 0.021 meV and ℏcQSI/a0 = 0.0028 meV 
(cQSI = 4.6 m s–1). To incorporate a finite experimental resolution, the results are 
broadened using a Gaussian with FWHM values of 0.04 meV, 0.04 meV and 
0.035 meV at the X, K and Q = (1, 1, 0) points, respectively, for sample 1 and of 
0.035 meV at the X point for sample 2. The vertical dotted lines in d–i are guides 
to the eye to denote the transitions from the quasielastic photon signal to the 
first spinon peak and between the three spinon peaks of π-flux QSI. The vertical 
error bars in a–c and m are statistical errors of one standard deviation. The 
horizontal bars in a–c and m are the instrumental energy resolutions in FHWM as 
determined from the energy width of σNSFx (E). Data in a and b are obtained with 
Ef = 3.23 meV, whereas in c and m, they are obtained with Ef = 2.51 meV. The 
vertical error bars in d–f, j–l, n and o are propagating errors using equation (3).
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The doublets can be modelled as pseudospins-1/2 in which the x and 
z components of the pseudospin (τx and τz) transform as magnetic 
dipoles, whereas the y component (τy) transforms as a magnetic 
octupole46,47. The x component is referred to as a dipole despite having 
an octupolar magnetic charge density (Fig. 1a) because of its transfor-
mation property. The most general nearest-neighbour Hamiltonian for 
these dipolar–octupolar pseudospin systems is

ℋ= ∑
a∈{x,y,z}

∑
⟨i,j⟩

Jaaτai τ
a
j +∑

⟨i,j⟩
Jxz (τxi τ

z
j + τzi τ

x
j ) , (1)

where the pseudospin components are defined in sublattice-dependent 
local coordinates. By performing a local rotation about the y axis, the 
system can be brought to the simple XYZ form as

ℋ= ∑
a∈{x,y,z}

∑
⟨i,j⟩

𝒥𝒥aSai S
a
j , (2)

with the pseudospins Sx = cos θτx − sin θτz, Sy = τy and Sz = sin θτx +  
cos θτz. When the dipolar–octupolar system stabilizes QSI, the XYZ 
model can be mapped to lattice quantum electrodynamics by asso-
ciating the pseudospin component with the dominant coupling 
𝒥𝒥|| = max (𝒥𝒥x, 𝒥𝒥y, 𝒥𝒥z) to the emergent electric field ℰ, that is, S||i = ℰr,r′, 
and the transverse parts to spinon bilinears dressed with the emergent  
photon S+i = 1

2
Φ†

r ei𝒜𝒜r,r′Φr′ . Here S+ is the raising operator in the S∥  
basis, r and r′ label the centres of the tetrahedron such that the site i sits  
at the centre of the link r→r′ joining them, Φ†

r  is a spinon creation oper-
ator and 𝒜𝒜 is the vector potential canonically conjugate to the ℰ field.

Depending on the leading coupling 𝒥𝒥||, drastically different 
responses are expected in inelastic neutron scattering (INS) experi-
ments. Indeed, Ce2Zr2O7 has an anisotropic g tensor with gzz = 2.57 and 
gxx = gyy = 0 such that the magnetic field linearly couples only to τz (refs. 
38,39). As a result, neutron scattering cross-sections σ are only sensi tive 
to correlations between τz for small momentum transfer σ ∝ 〈τzτz〉 ∝  
cos2 θ〈SzSz〉 + sin2 θ〈SxSx〉 (ref. 41). If 𝒥𝒥|| = 𝒥𝒥y > 𝒥𝒥x, 𝒥𝒥z , INS probes the 
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E = 0 ± 0.03 meV for Ce2Zr2O7. a, Theoretical prediction for the polarization 
anisotropy Mz − My from the total of spinons and photons at the elastic line 
E = 0 ± 0.03 meV in the [h, h, l] scattering plane using ℏcQSI/a0 = 0.0028 meV 
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f,g, Comparison between measurements and theoretical predictions for My along 
the [h, h, l] directions with l = 0, 0.25, 0.5, 0.75 and 1 (f), and along the [0, 0, l] 

direction for samples 1 and 2 (g). They are indicated by arrows in d. The results  
in f are shifted vertically for clarity. The results in g are compared with CSI.  
h, Theoretical predictions of Mz in the [h, h, l] scattering plane. i–k, Mz along the 
[h, h, 0] (i), [h, h, 1] (j) and [0, 0, l] (k) directions, and the theoretical calculation 
for the contributions from spinons, photons and their total. These lines are 
indicated by arrows in d. The grey windows in i and j indicate the nuclear Bragg 
peaks at the (1, 1, 1) and (2, 2, 0) points. The vertical error bars in c, f, g and i–k are 
propagating errors using equation (3). Data in b, c, e–g and i–k are obtained with 
Ef = 3.23 meV. The vertical error bars in b are statistical errors of one standard 
deviation. All measurements are on sample 1 except the second panel of g.
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two-spinon continuum σ ∝ cos2(θ)〈Φ†ΦΦ†Φ〉 + sin2(θ)〈Φ†ΦΦ†Φ〉, 
whereas the photon remains invisible. By contrast, for 𝒥𝒥|| = 𝒥𝒥x > 𝒥𝒥y, 𝒥𝒥z, 
both photons and spinons should be observable provided there  
is a non-zero off-diagonal term θ  ≠ 0 (that is, Jxz ≠ 0) since 
σ ∝ cos2 (θ) ⟨Φ†ΦΦ†Φ⟩ + sin2 (θ) ⟨ℰℰ⟩ . Identifying a quasielastic  
signal from the photons, thus, provides a method to obtain information 
about the underlying microscopic couplings of a dipolar–octupolar 
QSI (Fig. 1d).

Previous investigations of Ce2Zr2O7 have suggested that it stabi-
lizes a QSI as its ground state. Heat capacity measured down to ~50 mK, 
magnetic susceptibility and muon spin relaxation found no sign of 
magnetic order or spin freezing above 20 mK (refs. 38,39,42,53–55). 
Further detailed theoretical fits to thermodynamic measurements 
have determined the microscopic couplings, indicating that the system 
is in a region of parameter space that is theoretically suggested to host 
a specific flavour of QSI known as the π-flux quantum spin ice (π-QSI), 
where a static π-flux of the emergent gauge field threads the hexagonal 
plaquette of the pyrochlore lattice (∇ ×𝒜𝒜=π). The other stable QSL 
in the phase diagram, 0-flux QSI (0-QSI) (Fig. 1d), only has vanishing 
fluxes (∇ ×𝒜𝒜=0). In particular, one investigation found that the  
leading coupling is between the octupolar components Sy (ref. 49), 
whereas another puts Ce2Zr2O7 at the boundary (that is, 𝒥𝒥y ≈ 𝒥𝒥x > 𝒥𝒥z) 
between the π-flux QSI with dominant dipolar (π-D-QSI) and dominant 
octupolar (π-O-QSI) coupling54 (Fig. 1d). INS should be able to differ-
entiate between these two cases since the photon will not be visible  
in π-O-QSI but should produce a visible quasielastic signal for  
π-D-QSI if θ ≠ 0.

In previous experiments on Ce2Zr2O7 and Ce2Sn2O7, unpolarized 
or polarized neutron scattering with only one neutron polarization 
direction was carried out at base (T = 35–100 mK) and high (T = 10 K) 
temperatures. Then, the magnetic signal was extracted by taking the 
temperature difference in scattering signals between the base and 
high temperatures38–42,53,54,56. This method reveals a broad continuum 
consistent with a two-spinon continuum and no magnetic signal at 

the elastic position E ≈ 0 meV. In particular, recent measurements 
on Ce2Sn2O7 have revealed the presence of three inelastic peaks of 
decreasing intensity in the continuum56, a signature of π-flux QSI52 
(Fig. 1d). Although such measurements are consistent with π-O-QSI, 
determining the existence/absence of a quasielastic magnetic signal 
is an involved task that requires careful consideration. The assumption 
in isolating the magnetic signal by temperature subtraction is that the 
non-magnetic scattering is temperature independent between the base 
and high temperatures38–42,53,54,56. Although such an assumption might 
be reasonable for CSI in which magnetic scattering is much larger than 
the non-magnetic contributions due to the large effective moment22–24, 
it is unclear that the temperature difference method38–42,53,54,56 can 
effectively extract the magnetic signal in the low-energy region, near  
E ≈ 0, for an S = 1/2 system with a potentially large non-magnetic  
scattering background.

A conclusive way to isolate the E and Q dependencies of magnetic 
scattering in a material is the full neutron polarization analysis57–59. By 
polarizing the incident-beam neutrons along the directions of x axis 
(parallel to Q), y axis (perpendicular to Q in the scattering plane) and 
z axis (perpendicular to the scattering plane), the neutron spin-flip (SF) 
and non-spin-flip (NSF) scattering cross-sections at Q and E for  
the x, y or z polarization direction are σSFx,y,z(Q, E) and σNSFx,y,z(Q, E), respec-
tively (Fig. 1c). They are related to the magnetic scattering along the  
y and z directions My and Mz, respectively, via59
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Fig. 4 | Wavevector and polarization dependencies of magnetic scattering at 
E = 0.1 ± 0.03 meV for Ce2Zr2O7. a,d, Theoretical predictions for My (a) and 
Mz (d) from the total of spinons and photons at E = 0.1 ± 0.03 meV in the [h, h, l] 
scattering plane using ℏcQSI/a0 = 0.0028 meV (cQSI = 4.6 m s–1). b,c, My along the 
[h, h, 0] (b) and [0, 0, l] (c) directions and the theoretical predictions for the 
contributions from spinons, photons and their total. These lines are indicated 

by arrows in a. e,f, Mz along the [h, h, 0] (e) and [0, 0, l] (f) directions and the 
theoretical predictions for the contributions from spinons, photons and their 
total. These lines are indicated by arrows in d. The grey windows in b and e 
indicate the nuclear Bragg peak (2, 2, 0). The vertical error bars in b, c, e and f are 
propagating errors obtained using equation (3). Data in b, c, e and f are obtained 
with Ef = 3.23 meV. Measurements are performed on sample 1.
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where R is the imperfect neutron polarization quantified by measur-
ing the nuclear Bragg peaks contamination into the SF channel  
(R = NSFN

SFN
≈ 30  in our experiments), N is the nuclear coherent  

scattering (including temperature-dependent phonon scattering), NSI 
is the Q-independent nuclear spin incoherent scattering (NSI ≪ N)  
and B is the background scattering. For polarized neutron scattering 
experiments measuring only σSFz (Q)  and σNSFz (Q)  (refs. 24,42), both 
channels would have significant NSI + B scattering, and σNSFz (Q) would 
also have a nearly full N contribution. For CSI systems such as Ho2Ti2O7 
with large local moments (My, Mz ≫ N, NSI, B), one can approximate 
σSFz (Q) ≈ My  and σNSFz (Q) ≈ Mz  (ref. 24). However, for the effective  
S = 1/2 system such as Ce2Zr2O7, there is no determination of the inten-
sity ratio between My, Mz and N, NSI, B at different temperatures42. 
Therefore, full neutron polarization analysis by measuring σSFx,y,z(Q, E) 
and σNSFx (Q, E) is necessary to conclusively separate the magnetic scat-
tering from N, NSI and B without the need to use high-temperature 
measurements to estimate the background scattering42.

Figure 2a shows the energy scans of σSFx,y,z(Q, E) and σNSFx (Q, E) at 
Q = (0, 0, 1) and T = 50 mK. Near the elastic position (E = 0 ± 0.03 meV; 
Extended Data Fig. 2), we find σNSFx > σSFx > σSFy ≈ σSFz . At the inelastic 
position at which previous unpolarized INS work found spin  
excitation continuum around E = 0.12 meV (refs. 38,39), we have 
σSFx > σSFy ≈ σSFz > σNSFx . The energy dependence of Mz + My determined 
using σSFx,y,z  in equation (2a) and equation (3) reveals 3 distinct peaks at 
E ≈ 0, 0.05 and 0.12 meV, with dominating magnetic scattering at 
E = 0 ± 0.03 meV (Fig. 2d). Furthermore, Mz − My ≈ 0 (Fig. 2j) indicates 
that magnetic scattering at the probed energies is isotropic in spin 
space. Although the magnetic intensity around E ≈ 0.12 meV is consist-
ent with unpolarized INS measurements38,39, the discovery of dominat-
ing magnetic scattering near zero energy cannot be obtained from 
previous work38–42,53,54,56. Since unpolarized neutron scattering meas-
ures σNSFx + σSFx , we estimate that Mz + My is about 10% and 75% of the 
total scattering near the elastic position and E = 0.12 meV, respectively 
(Fig. 2d). Figure 2b,c summarizes the energy scans of σSFx,y,z(Q, E) and 
σNSFx (Q, E) at Q = (3/4, 3/4, 0) and Q = (1, 1, 0), respectively. The estimated 
Mz + My and Mz − My are shown in Fig. 2e,k, respectively, for Q = (3/4,  
3/4, 0). Similar results, obtained with better instrumental energy reso-
lution, are shown in Fig. 2f,l. Although magnetic scattering at the X and 
K points are isotropic in spin space at the probed energies (Fig. 2j,k and 
Extended Data Figs. 3 and 4), the quasielastic magnetic scattering at 
Q = (1, 1, 0) is clearly anisotropic with Mz − My > 0 (Fig. 2l and Supple-
mentary Tables 1–5). To verify the results’ reproducibility and deter-
mine the energy scale of quasielastic magnetic scattering, we have 
performed similar measurements on a second sample at the X point at 
Q = (0, 0, 1) with a higher energy resolution (0.035-meV full-width at 
half-maximum (FWHM)) and at a lower temperature (T = 33 mK). The 
results shown in Fig. 2m–o confirm the presence of a dominant quasie-
lastic peak near 0.01 meV in the total magnetic scattering (Fig. 2n)  
and the absence of polarization anisotropy at the X point (Fig. 2o  
and Extended Data Figs. 6–8).

To understand these results, we model the spinon dynamics using 
the framework of gauge mean-field theory (GMFT)33,51,52,60–62 and 
describe the photons using Gaussian quantum electrodynamics26,30 
(Methods). Assuming such an emergent quantum electrodynamics 
description, the dominant quasielastic signal is then explained by the 
emergent photons. We reach this conclusion since the dominant 
quasielastic signal cannot be accounted for by only invoking the spinon 
contribution (Methods). As already emphasized, the observation of a 
signal coming from the emergent photons implies that 𝒥𝒥x > 𝒥𝒥y, 𝒥𝒥z   
and θ ≠ 0 (π-D-QSI regime).

We fit the experimental results by tuning the microscopic cou-
plings and the speed of the emergent photon to obtain the theoretical 
predictions (Fig. 2g–l). The theoretical modelling predicts a series  
of peaks in the total magnetic scattering Mz + My. The first quasielastic 
one comes from photons, and then the spinons produce three others of 

decreasing intensity (the third is extremely faint). These three inelastic 
spinon peaks are a unique and distinctive signature of π-flux QSI52.  
By contrast, in 0-flux QSI, spinons produce a broad inelastic continuum 
with a single local maximum. The predicted transitions are clearly 
observed at Q = (0, 0, 1) (Fig. 2d and Extended Data Fig. 5). At this point, 
there is a transition from the photon contributions to the first spinon 
peak at around E ≈ 0.025 meV and then a second one from the first 
to the second spinon peak at E ≈ 0.075 meV. Our model is consistent  
with the position of these transitions and the decreasing intensity of  
the corresponding peaks. For the polarization difference Mz − My,  
theory predicts that there should not be any anisotropy at Q = (0, 0, 
1), a small response at Q = (3/4, 3/4, 0) and the most intense signal at  
Q = (1, 1, 0), which is once again consistent with the measurements 
(Fig. 2j–l,o). In particular, at Q = (1, 1, 0) (Fig. 2l), the anisotropic quasie-
lastic response is well accounted for by the photon. The main discre-
pancy is that the model predicts a finite Mz − My value at Q = (1, 1, 0) in 
the inelastic spinon contribution, which is not seen in the experiment. 
This could potentially be attributed to effects beyond GMFT, such as 
thermally excited fluxes or spinon–photon interactions. Measurements 
on the second sample are also well reproduced by the same model 
(Fig. 2n,o) without introducing any additional fitting parameter besides 
an overall scaling factor. In short, the energy scans provide evidence for 
a substantial quasielastic signal with the same momentum-dependent 
polarization anisotropy as predicted for the emergent photon, as well 
as multiple inelastic peaks consistent with the two-spinon continuum 
of π-flux QSI.

To further investigate if the quasielastic signal is compatible with 
the emergent photon, we e xamine its momentum dependence (Fig. 3). 
Figure 3b,c presents the raw σSFx,y,z(Q) data and the resulting polariza-
tion anisotropy Mz − My at a specified Q value with E = 0 ± 0.03 meV.  
The quasielastic signal displays clear momentum and polarization 
dependencies with Mz > My at Q = (1, 1, 0), inconsistent with conven-
tional strong magnetic disorder (that is, glassiness), where one would 
expect a polarization- and momentum-independent signal (that is, 
Mz ≈ My at all Q values; Methods). By contrast, our modelling using 
emergent spinons and photons properly captures the observed spin- 
space anisotropy (Fig. 3a–c).

Figure 3d,h shows the calculated Q dependence of My and Mz at 
E = 0 ± 0.03 meV, respectively (Extended Data Fig. 3). The calculations 
predict intense scattering along the first Brillouin zone boundary for 
My and a mostly momentum-independent signal for Mz. These are 
compared with the measurements of My (Fig. 3e–g) and Mz (Fig. 3i–k).  
Both comparisons show that the GMFT and Gaussian quantum elec-
trodynamics effectively reproduce the momentum and polariza-
tion dependencies of the magnetic scattering. In particular, Fig. 3e,g  
shows a depletion of My at the zone centre and oscillations along the  
[0, 0, l] direction. These observations are often taken as signatures of 
QSI given that one expects a flat My signal at the zone centre and along 
[0, 0, l] for CSI22–24,30,36,38 (Fig. 3g). We have carried out these measure-
ments on two different Ce2Zr2O7 samples, and the results are consistent 
with each other (Fig. 3g). Since the magnetic scattering near the elastic 
line is dominated by the photon (Fig. 3i–k), we fit these measurements 
to determine an optimal speed of light of ℏcQSI/a0 = 0.0028 meV, where 
a0 is the lattice constant.

Figure 4a,d shows the calculated Q dependence of My and Mz at 
E = 0.1 ± 0.03 meV in the (h, h, l) zone, respectively (Extended Data 
Fig. 3). Compared with Fig. 2, this momentum scan is centred around 
the second spinon peak and is, thus, dominated by spinons with only 
negligible photon scattering. The comparison of experimentally esti-
mated My and Mz with theoretical calculations along the [0, 0, l] and  
[h, h, 0] directions are summarized in Fig. 4b,c and Fig. 4e,f, respec-
tively. Note that the theoretical calculations are scaled consistently with 
the data in Figs. 2–4. These results, thus, show that on top of giving a 
reasonable qualitative agreement for the polarization and momentum 
dependencies of the inelastic magnetic scattering, our description in 
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terms of emergent quantum electrodynamics quantitatively repro-
duces the intensity ratio between the elastic and inelastic signals at 
E ≈ 0.1 meV (Extended Data Figs. 6–8).

Finally, we have performed specific heat measurements with a 
setup (Extended Data Fig. 9) that can reach temperatures below the 
previous low-temperature limit of ~50 mK (refs. 39,42). The data 
decrease monotonically down to the lowest temperature, evidencing 
the absence of a phase transition (Fig. 5). This is in agreement with 
previous muon spin relaxation experiments39,55 and represents further 
support for a non-magnetically ordered ground state. The temperature 
dependence at the lowest temperatures is well captured by a T3 power 
law, as shown by the straight line with a slope of 3 on the double- 
logarithmic scale (Fig. 5). This behaviour is expected for the photon-like 
excitation associated with the QSI, thereby presenting further evidence 
for this state. We note that the low-temperature specific heat data  
can also be equally well fit by an activated exponential form. However, 
as detailed in Methods (‘Quality of fits to the specific heat data’)  
and Extended Data Fig. 9, the power-law fit provides a better  
physical description of the system. We, therefore, adopt the cubic fit 
consistent with gapless photon excitations expected in a QSI. The 
photon velocity extracted from the slope of this cubic scaling is 
ℏcQSI/a0 = 0.0049 ± 0.0002 meV, a value of the same order as the one 
obtained from fitting the neutron scattering results. The integrated 
magnetic entropy is somewhat smaller than the full entropy  
R̄ln2 (Extended Data Fig. 9h), where R̄ is the universal gas constant,  
but still consistent with the full value within the error bars of the 
experiments.

Summary
We performed full polarization analysis of INS experiments on the 
3D pyrochlore lattice QSI candidate Ce2Zr2O7 and have discovered a 
continuum of quasielastic magnetic scattering near E = 0. This signal 
is incompatible with a spinon continuum at higher energy but consist-
ent with the emergent photon predicted to exist in QSI25,26,30. Such an 
observation also sheds light on microscopic couplings since the pres-
ence of photons would indicate the ground state is π-D-QSI. We have 
further highlighted that the multiple-peak structure of the inelastic 
signal and the momentum dependence of the intensity profile display 
the key features of π-QSI. Although current polarized neutron scat-
tering technology does not allow higher-resolution measurements 

to determine the linear dispersion expected for photon scattering, 
the cubic scaling of the low-temperature heat capacity measurements 
(Fig. 5) offers further supporting evidence for their presence. Future 
investigations on the role of disorder and neutron scattering experi-
ments with even greater energy resolution would be highly desirable to 
draw definitive conclusions on the nature of the observed quasielastic 
signal. In any case, our work, combined with previous experimental 
investigations38,39,42,53–55, lends strong support to the identification 
of Ce2Zr2O7 as an experimental realization of QSI—one of the most 
paradigmatic QSL in condensed-matter physics.
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Methods
Neutron scattering experiments
Single-crystal Ce2Zr2O7 used for our experiments was described in 
detail in an earlier work39. Our polarized neutron scattering experi-
ments were performed on the three-axis low-energy spectrometer 
(ThALES) at the Institut Laue Langevin. We carried out experiments on 
two crystals to confirm the results. One piece of single crystal (~2 g, 
sample 1) was mounted on a copper sample holder (Extended Data 
Fig. 1a). The crystal was prealigned using a laboratory X-ray Laue 
machine (Extended Data Fig. 1b), and then precisely aligned using the 
OrientExpress Laue neutron station at the Institut Laue Langevin. The 
mosaics of the (0, 0, 4) and (1, 1, 1) nuclear Bragg peaks were 1.87° ± 0.06° 
and 2.37° ± 0.24° FWHM, respectively. Sample 2 (~1.7 g) and its Laue 
pattern are shown in Extended Data Fig. 1c,d, respectively. The mosaic 
of the (1, 1, 1) peak of sample 2 is 2.85° ± 0.61° FWHM. The momentum 
transfer Q in 3D reciprocal space in Å−1 was defined as Q = ha* + kb* + lc*, 
where h, k and l are Miller indices and a* = 2π(b × c)/[a ∙ (b × c)], 
b* = 2π(c × a)/[a ∙ (b × c)] and c* = 2π(a × b)/[a ∙ (b × c)] with a = a0x̂, 
b = a0ŷ, c = a0ẑ (where a0 = 10.70 Å at room temperature is the lattice 
parameter, and x̂, ŷ and ẑ are unit vectors of the 3D Cartesian coordi-
nate system) and the Fd ̄3m space group (Fig. 1a). Sample 1 (sample 2) 
is aligned in the (h, h, 0) × (0, 0, l) scattering plane and mounted inside 
a dilution refrigerator kept at T = 50 mK (T = 33 mK) for the entire 
experiment (Fig. 1b). The final neutron energy was fixed at Ef = 3.23 meV 
or Ef = 2.51 meV, as specified in the figure caption. Both monochromator 
and analyser are horizontally and vertically focusing Heusler (1, 1, 1) 
crystals to produce and detect polarized neutrons. A flipping ratio 
measured on the (1, 1, 1) nuclear peak was R = NSFN

SFN
≈ 20,040

650
≈ 30.8   

for experiments on sample 1. The flipping ratio was ~38 for sample 2. 
Scan at each point/energy takes ~35 s for NSF channels and ~175 s for SF 
channels. Due to the low incident neutron energies, no neutron filter 
was used.

The x, y and z neutron polarization directions are defined as  
parallel to Q, perpendicular to Q but in the scattering plane, and  
perpendicular to Q and the scattering plane, respectively (Fig. 1c).  
The corresponding NSF and SF neutron scattering cross-sections  
are summarized in equation (3). For polarized neutron scatter ing  
(elastic or inelastic) experiments with only vertical (z-axis)  
neutron polarization, the SF and NSF neutron scattering cross- 
sections are σSFz = R

R+ 1
My +

1
R+ 1

(Mz + N) + 1
R+ 1

[ (2R+ 1)
3

NSI + (R + 1)B]  and  

σNSFz = 1
R+ 1

My +
R

R+ 1
(Mz + N ) + 1

R+ 1
[ (R+ 2)

3
NSI + (R + 1)B], respectively.

Using full neutron polarization analysis by measuring σSFx,y,z(Q, E ) 
and σNSFx (Q, E) at accessible values of Q and E, one can determine My and 
Mz, without the need to change the temperature. In particular, My and 
Mz can be solely determined from σSFx,y,z(Q, E) using the first three rows 
of equation (3), which is exact for a paramagnet like Ce2Zr2O7. We have

σSFx = R
R + 1My +

R
R + 1Mz + C1, (4)

σSFy = 1
R + 1My +

R
R + 1Mz + C1, (5)

σSFz = R
R + 1My +

1
R + 1Mz + C1, (6)

where C1 =
1

R+ 1
N + (2R+ 1)/3

R+ 1
NSI + B;

Equation (4) − Equation (5) givesMz =
R + 1
R − 1 (σ

SF
x − σSFz ) ; (7)

Equation (4) − Equation (6) givesMy =
R + 1
R − 1 (σ

SF
x − σSFy ) ; (8)

Equation (7) + Equation (8) givesMy +Mz =
R + 1
R − 1 (2σ

SF
x − σSFy − σSFz ) ;

(9)

Equation (7) − Equation (8) givesMz −My =
R + 1
R − 1 (σ

SF
y − σSFz ) . (10)

The flipping ratio, R ≈ 30, is a typical value from experience  
on ThALES. In principle, there is an uncertainty of R of a few per cents, 
but in our case, this would have a very small effect. A 10% uncertainty 
of R (from 30 to 27) would give a 0.6% uncertainty of R+ 1

R− 1
 (from 1.069  

to 1.077) My or Mz. A 50% uncertainty of R (from 30 to 15) would only 
give a 7% uncertainty of R+ 1

R− 1
 (from 1.069 to 1.142) My or Mz. For this 

reason, we can safely ignore the uncertainties of R.
Using the last three rows of equation (3), we can also extract My 

and Mz from σNSFx,y,z(Q, E):

σNSFx = 1
R + 1My +

1
R + 1Mz + C2, (11)

σNSFy = R
R + 1My +

1
R + 1Mz + C2, (12)

σNSFz = 1
R + 1My +

R
R + 1Mz + C2, (13)

where C2 =
R

R+ 1
N + (R+ 2)/3

R+ 1
NSI + B;

Equation (12) − Equation (11) givesMy =
R + 1
R − 1 (σ

NSF
y − σNSFx ) ; (14)

Equation (13) − Equation (11) givesMz =
R + 1
R − 1 (σ

NSF
z − σNSFx ) ; (15)

Equation (14) + Equation (15) givesMy +Mz =
R + 1
R − 1 (−2σ

NSF
x + σNSFy + σNSFz ) ;

(16)

Equation (15) − Equation (14) givesMz −My =
R + 1
R − 1 (σ

NSF
z − σNSFy ) . (17)

However, σNSFx,y,z(Q, E )  contains nuclear scattering (N), which is  
much larger than NSI, especially at the elastic line. Therefore, we will 
have much larger uncertainties in obtaining the values of My and Mz  
due to the propagation of statistical errors (Supplementary Table 2). 
In practice, one would not use σNSFx,y,z(Q, E)  to extract the magnetic  
signal. Also, our counting time for σNSFx,y,z(Q, E) is only one-fifth that of 
σSFx,y,z(Q, E), resulting in even larger errors when calculating My and Mz.

To estimate the instrumental energy resolution, we fit the energy 
scans of σNSFx  at different Q values (Extended Data Fig. 2). For 
Ef = 3.23 meV, the instrumental energy resolution is about 0.065 meV 
at the FHWM. For Ef = 2.52 meV, the energy resolution is 0.042 meV at 
the FHWM. For our measurements on sample 2 with Ef = 2.52 meV and 
Ef = 3.23 meV at (0, 0, 1), the instrumental energy resolutions are 
0.035 meV and 0.052 meV, respectively (Extended Data Fig. 2d,e). 
Extended Data Fig. 3 compares the raw data of σNSFx (Q)  with σSFx,y,z(Q)   
at the elastic position E = 0 ± 0.03 meV. We see that NSF scattering 
dominates the scattering signal at all the probed Q values. Extended 
Data Fig. 3g,h compares the raw data of σNSFx (Q)  with σSFx,y,z(Q)  at the  
inelastic position E = 0.1 ± 0.03 meV. Here magnetic scattering in the 
SF channel is larger than non-magnetic scattering in the NSF channel.

To compare our measurements discussed in Figs. 1–4 with the 
energy-integrated spin–spin correlation function Sy(Q) = ∫My(Q, E)dE 
and Sz(Q) = ∫Mz(Q, E)dE discussed before42, we integrated My(Q, E) and 
Mz(Q, E) (Fig. 2) in energy at the X and K points and compare the out-
come with our theoretical model and ref. 42 in Supplementary Table 1.

From Supplementary Table 1, we see that our estimated ∫Mz(E)dE 
is about 50% smaller than that from σNSFz (Q)  measurements42. From 
equation (3), we note that σNSFz (Q)  is sensitive to nuclear scattering 
(including phonons, N) in addition to the usual background scattering 
(B). To understand the problem, we note all previous unpolarized38,39 
and vertical field-polarized42 neutron scattering experiments assume 
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that the background and other non-magnetic scattering is temperature 
independent between the base and high temperatures. Using our 
measured σSFx,y,z(Q, E) and σNSFx (Q, E) values, we can determine N, NSI and 
B at the elastic position at base temperature (50 mK) without the need 
for high-temperature data. At Q = (0, 0, 1) and E = 0 ± 0.03 meV, we find  
C1 =

1
R+ 1

N + (2R+ 1)/3
R+ 1

NSI + B = 326 ,  C2 =
R

R+ 1
N + (R+ 2)/3

R+ 1
NSI + B = 603 ,  

My = 57.5 and Mz = 62 (Supplementary Table 2). As NSI scattering is  
typically fairly small, nuclear scattering in the NSF channel is compa-
rable with the background scattering. Therefore, σNSFz (Q) measurements 
contain considerable nuclear scattering that needs to be eliminated, 
and the intrinsic magnetic signal is about 10% of non-magnetic 
scattering.

To improve the statistics and compare with theoretical calcu-
lations, we repeated the measurements of σSFx,y,z(Q, E)  and σNSFx,y,z(Q, E)  
almost 3–5 times at Q = (0, 0, 1), (1, 1, 0), (0.5, 0.5, 0.5), (0, 0, 2) and  
(0, 0, 3) (Figs. 1b and 3a) with E = 0 ± 0.03 meV and E = 0.1 ± 0.03 meV. 
This allows an overall determination of My and Mz. Supplementary 
Table 2 summarizes these results at the elastic position and our calcu-
lation of My + Mz, My and Mz. Supplementary Table 3 compares the 
outcome with the theoretical calculations. Supplementary Tables 4 
and 5 summarize similar results at E = 0.1 ± 0.03 meV. Overall, these 
results are consistent with those discussed in Figs. 2–4.

Problems with using high-temperature (~10 K) as background 
in unpolarized neutron scattering experiments
In our previous unpolarized neutron scattering experiment39, we 
assumed that the magnetic scattering at 12 K is diffusive enough  
and would be Q and E independent and can, thus, serve as the non- 
magnetic background. However, the Bose population factor dictates 
that any bosonic excitations (acoustic phonons and other background 
scattering) within 1 meV would be populated at 12 K and suppressed at 
50 mK (Extended Data Fig. 4a,b). This is especially important at elastic 
and quasielastic positions for Ce2Zr2O7, where N and B have about 90% 
of the total scattering signal. From comparing the integrated intensity 
along the [0, 0, l] and [h, h, 0] directions at the elastic line at 35 mK and 
12 K (Extended Data Fig. 4c,d), we clearly see that the intensity at 12 K 
is higher than that at 35 mK in most of the reciprocal space in the scat-
tering plane, probably due to thermally induced quasielastic scattering 
at 12 K. Therefore, magnetic excitations at energies near zero were 
overlooked by the incorrect oversubtraction in unpolarized neutron 
scattering experiments. Even for polarized neutron scattering experi-
ments with only vertical neutron polarization42, high-temperature 
measurements were used as background scattering and similar prob-
lems may occur. For CSI such as Ho2Ti2O7 with a large effective magnetic 
moment, the magnetic scattering is many times larger than that of 
Ce2Zr2O7 (refs. 22–24,38,39). Therefore, a polarized neutron scattering 
experiment with only vertical neutron polarization using σSFz (Q) and 
σNSFz (Q) can still accurately determine My and Mz due to the overwhelm-
ing magnetic signal compared with the magnitudes of N, NSI and B 
scattering24. This is incorrect for Ce2Zr2O7 with effective S = 1/2 (Figs. 2 
and 3 and Supplementary Table 2).

Possible effect of chemical disorder
As determined from an earlier work39, there is a 4% antisite disorder of 
Ce and Zr from X-ray diffraction. Though Ce2Zr2O7 can be air sensitive, 
our single-crystal samples were stored in an Ar glovebox before and 
after the experiments, and we found no evidence of oxidation. Our data 
for Ce2Zr2O7 are consistent with the INS data of the Ce2Sn2O7 powder 
sample for energies above 0.03 meV, which has less disorder56. Recent 
work on single crystals of Ce2Sn2O7 (ref. 45), which has about 3% B-site 
stuffing of Ce4+ (comparable with 4% in Ce2Zr2O7), behave similar to 
Ce2Sn2O7 powder in terms of heat capacity and other properties. From 
this perspective, a few per-cent disorder in Ce2Zr2O7 should not induce 
the wavevector-dependent scattering (Fig. 3e) and spin excitations 
should not be anisotropic in the spin space (Fig. 3c).

Disorder can play a significant role in modifying the magnetic 
behaviour, and there are examples in which even small amounts can 
lead to notable changes. In the case of the non-Kramers doublet sys-
tem of Pr2Zr2O7, disorder lifts the degeneracy of the doublet, leading 
to a broadened spin excitation spectrum centred at around 0.4 meV 
(refs. 36,64). However, in Ce2Zr2O7, the robustness of the Kramers 
doublet ground state makes it less sensitive to this type of perturbation. 
Moreover, there are Kramers doublet systems that exhibit sensitivity 
to disorder. For instance, Yb2Ti2O7, which lies near the phase bound-
ary between a canted ferromagnetic phase and a Γ5 antiferromagnetic 
phase, demonstrates that disorder can destabilize one phase and favour 
another. Local variations in exchange interactions due to disorder 
can shift the balance between ferromagnetic, antiferromagnetic or 
spin-liquid-like behaviours37. By contrast, Ce2Zr2O7 is not known to be 
near such phase boundaries, and no changes in magnetic phases have 
been reported due to disorder in Ce-based pyrochlores, including 
Ce2T2O7 (T = Zr, Sn or Hf).

Moreover, a.c. susceptibility measurements in Ce2T2O7 show no  
frequency dependence, indicating that the observed disorder is 
unlikely to induce a spin-glass state38–45. Although complete B-site 
disorder in Ce2NbSbO7 has been shown to result in a spin-glass  
behaviour (evidenced by clear peaks and frequency dependence in a.c. 
susceptibility measurements in our unpublished work), the 4% disorder 
observed in Ce2T2O7 appears insufficient to cause such an effect.

The large temperature gradient during the floating-zone growth 
process probably contributes to the observed 4% disorder in Ce2T2O7. 
Future advancements in synthesis techniques or annealing methods 
may help reduce the level of disorder, though its complete elimination 
is unlikely. The amount of disorder necessary to disrupt the prospec-
tive realization of QSI in dipolar–octupolar remains an open issue. Our 
work, thus, calls for systematic investigations of the role of disorder in 
Ce-based spin-ice compounds.

Is the signal inelastic or elastic?
From both muon spin spectroscopy and heat capacity measurements, 
there is no evidence of magnetic order down to 20 mK, indicating that 
the observed scattering cannot originate from excitations tied to 
magnetic ordering39,55. Additionally, earlier neutron diffuse scatter-
ing studies found no vacancy-induced diffuse scattering across the 
energy ranges studied53,54. These observations suggest that the signal 
is magnetic in origin but not related to long-range order.

Unlike the gapped spinon excitations observed in some QSL candi-
dates, the signal attributed to emergent photons in Ce2T2O7 is gapless 
and lies very close to the elastic line. From the heat capacity data, the 
T3 scaling persists up to approximately 60 mK, corresponding to an 
energy of about 0.005 meV. However, this energy range is much smaller 
than the experimental resolution (0.035–0.076 meV), making it chal-
lenging to clearly resolve this signal from the elastic line. Although the 
presence of gapless excitations is consistent with emergent photons 
in the U(1) QSL framework, the overlap with elastic scattering requires 
careful analysis to distinguish these features confidently.

To investigate further, we fit the magnetic signal near the elastic 
line to determine relative shifts compared with the elastic signal. As 
shown in Fig. 2n, the data perhaps hint at a small shift, although it is 
well within the energy resolution. Similar shifts were fitted for the 
magnetic signals in My + Mz (Fig. 2d–f), My and Mz. Below are the fitted 
centre positions with uncertainties from Extended Data Figs. 6–8.

• AtQ = (0,0, 1) ∶

• C(My) = 0.03143 ± 0.0074meV,

• C(Mz) = 0.03104 ± 0.00773meV,

• C(My +Mz) = 0.03079 ± 0.00688meV.
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• AtQ = (3/4, 3/4,0) ∶

• C(My) = (8.97 ± 7.29) × 10−4 meV,

• C(Mz) = (1.69 ± 0.555) × 10−3 meV,

• C(My +Mz) = (9.33 ± 6.68) × 10−4 meV.

• AtQ = (1, 1,0) ∶

• C(My) = 0.00569 ± 0.00367meV,

• C(Mz) = 0.00924 ± 0.0056meV,

• C(My +Mz) = 0.0796 ± 0.00418meV.

Among the three Q points, the scans at Q = (0, 0, 1) provide the 
best statistics due to extended scan times, although at the expense of 
poorer energy resolution. Conversely, scans at Q = (1, 1, 0) achieve a 
higher energy resolution, whereas those at Q = (3/4, 3/4, 0) are limited 
by both resolution and fewer scan repetitions. Nevertheless, none of 
the scans exhibit shifts in the magnetic signal into the E < 0 regime, 
even within the resolution limits.

In ideal circumstances, one could achieve higher energy resolu-
tion by reducing the incident neutron energy (Ei) to better isolate the 
magnetic signal near the elastic line. However, practical limitations 
such as beamtime and instrument flux impose constraints. The best 
experimental setup used here achieves a resolution of 0.035 meV (cor-
responding to Ei = 2.52 meV) on a cold neutron spectrometer, either at 
a triple-axis spectrometer like ThALES or a time-of-flight (TOF) instru-
ment like the Cold Neutron Chopper Spectrometer at the Spallation 
Neutron Source. Unpolarized TOF neutron scattering struggles to 
detect pure magnetic signals near the elastic line due to background 
subtraction challenges, whereas a polarized triple-axis spectrometer 
provides greater precision at the cost of reduced flux, approximately 
10–4–10–5 that of unpolarized TOF. For comparison, acquiring suffi-
cient statistics in a polarized triple-axis spectrometer would require 
~138 days, compared with ~20 min for a single TOF scan for one angle, 
rendering this approach impractical.

In conclusion, although the observed scattering near the elastic 
line is consistent with gapless magnetic excitations, the limitations 
of experimental resolution complicate distinguishing these signals. 
Further studies with optimized setups and analysis are required to 
definitively isolate and characterize these excitations.

Correlation lengths of the inelastic and quasielastic excitations
Fitting of the inelastic scattering signals along the (0, 0, l) direction 
(Extended Data Fig. 4f) yields an FWHM σk = 1.1446 ± 0.2824 and asso-

ciated correlation length (CL) = √2ln2a0

πσk
= 3.504 ± 1.147Å . Proceeding  

similarly for the quasielastic scattering signals (Fig. 2g) yields  

FWHM σk = 0.8245 ± 0.5121 and the resulting CL = √2ln2a0

πσk
= 4.87 ± 3.01Å . 

These results suggest that the inelastic and quasielastic excitations 
have similar correlation lengths and, therefore, arise from the same 
crystalline lattice of Ce2Zr2O7. It is difficult to imagine that a small 
disorder in Ce2Zr2O7 can give rise to dominant magnetic scattering 
signals at the quasielastic positions that have similar correlation 
lengths as higher-energy excitations.

Theoretical calculation of the dynamical spin structure factor 
in π-D-QSI
Considering that we are interested in a small momentum transfer, we 
assume that the octupolar magnetic form factor associated with the 
τx and τy moments can be neglected and that the magnetic form factor 

of τz is constant over the momentum transfers of interest. Then, the 
magnetic scattering along the local y and z axes has the generic form

My(z) (Q, E) = C
Nu.c.

∫dt∑
i,j

P y(z)
ij (Q) ei(Et+Q⋅(Ri−Rj)) ⟨τzi (t) τ

z
j (0)⟩ , (18)

where C is a global prefactor that depends on the parameters of the 
experiment under consideration (for example, sample size and neutron 
flux); Ri labels the position of site i; and Pij(Q) is a polarization factor 
that depends on the sublattices of sites i and j, the momentum transfer 
Q and the direction of magnetic scattering. Specifically, for Mz and My,  
we have Pz

ij (Q) = (êi,z ⋅ ̂zsc) (êj,z ⋅ ̂zsc) and Py
ij(Q) =(êi,z ⋅

Q×ẑsc
|Q×ẑsc |

)(êj,z ⋅
Q×ẑsc
|Q×ẑsc |

),  

respectively, where ẑsc is a unit vector perpendicular to the scattering  
plane and êi,z  are the basis vectors along the local z axis for the pseu-
dospin frame at site i. Using the pseudospins in the XYZ model, the 
above expression can be rewritten as

My(z) (Q, E) = C
Nu.c.

∫dt∑
i,j

P y(z)
ij (Q) ei(Et+Q⋅(Ri−Rj)) (cos2θ ⟨Szi (t) S

z
j (0)⟩

+sin2θ ⟨Sxi (t) S
x
j (0)⟩) .

(19)

With the slave–particle construction introduced in the main  
text, the dynamical averages for π-D-QSI become ⟨Sxi S

x
j⟩ = ⟨ℰr1 ,r2ℰr3 ,r4 ⟩, 

which gives the photon propagator. Here r1, r2, r3 and r4 label the  
centres of the tetrahedra such that r1 and r3 (r2 and r4) correspond to  
up (down) tetrahedra, and i and j sit at the middle of the bond  
r1→r2 and r3→r4, respectively. For the transverse correlation, we first  
rewrite the expression in terms of raising/lowering operators as  
⟨Szi S

z
j⟩ = − 1

4
(⟨S+i S

+
j ⟩ − ⟨S−i S

+
j ⟩ − ⟨S+i S

−
j ⟩ + ⟨S−i S

−
j ⟩)  before rewriting every-

thing with spinon operators

⟨Szi S
z
j⟩ = − 1

16 (⟨Φ†
r1 e

i𝒜𝒜r1 ,r2 Φr2Φ
†
r3 e

i𝒜𝒜r3 ,r4 Φr4 ⟩ − ⟨Φ†
r2 e

−i𝒜𝒜r1 ,r2 Φr1Φ
†
r3 e

i𝒜𝒜r3 ,r4 Φr4 ⟩

− ⟨Φ†
r1 e

i𝒜𝒜r1 ,r2 Φr2Φ
†
r4 e

−i𝒜𝒜r3 ,r4 Φr3 ⟩ + ⟨Φ†
r2 e

−i𝒜𝒜r1 ,r2 Φr1Φ
†
r4 e

−i𝒜𝒜r3 ,r4 Φr3 ⟩) .
(20)

In the following subsections, we explain how to evaluate the 
electric-field propagator using Gaussian quantum electrodynamics 
and the four spinon correlations using GMFT.

GMFT
To use GMFT, we first rewrite the XYZ model in terms of raising/ 
lowering spin operators as

ℋ=∑
⟨i,j⟩

[𝒥𝒥||S||i S
||
j − 𝒥𝒥± (S+i S

−
j + S−i S

+
j ) + 𝒥𝒥±± (S+i S

+
j + S−i S

−
j )] , (21)

where, for π-D-QSI, 𝒥𝒥|| = 𝒥𝒥x , 𝒥𝒥± = − (𝒥𝒥z + 𝒥𝒥y) /4  and 𝒥𝒥±± = (𝒥𝒥y − 𝒥𝒥z) /4.  
In GMFT, the initial spin-1/2 Hilbert space on the pyrochlore lattice is 
augmented to a new, larger one for which the bosonic degrees of free-
dom are introduced on the parent (premedial) diamond lattice whose 
sites are centred on the initial tetrahedra. For this mapping to be exact,  
the discretized Gauss’s law Qr = ηr∑i∈rS

||
i  needs to be imposed on all the  

tetrahedra, where the sum is over all 4 sites that are part of the tetra-
hedra and ηr = +1 (−1) if r is an up (down) tetrahedron. After mapping 
the pseudospin component with the dominant coupling to the  
emergent electric field S||i = ℰr,r′, the above definition is interpreted as 
a lattice divergence (that is, Q = ∇ ⋅ ℰ). The boson raising and lowering 
operators can then be defined as Φ†

r = eiϕr  and Φr = e−iϕr, respectively,  
where ϕr is canonically conjugate to Qr. These quantum rotors respect  
|Φ†

rΦr| = 1  by construction. Using the mapping S+i = 1
2
Φ†

r eiηr𝒜𝒜r,r′Φr′  
and S||i = ℰr,r′  introduced in the main text, the Hamiltonian can be  
rewritten as an interacting quantum rotor model strongly coupled to a  
compact U(1) gauge field. The interpretation of the above construction 
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is that S∥ corresponds to the emergent electric field, which is divergence- 
less (that is, ∇ ⋅ ℰ = 0) in the two-in–two-out manifold (that is, when 𝒥𝒥|| 
is much larger than the other couplings). Flipping this lattice field with 
ei𝒜𝒜r,r ′ breaks the ice rules (that is, ∇ ⋅ ℰ ≠ 0) and must then be accompa-
nied by the creation of a spinon–antispinon pair (Fig. 1e) that act as 
sources of the emergent field.

To get a tractable model, we carry out three successive  
approxi mations. (1) The four boson interactions coming from  
the U(1) symmetr y-breaking term 𝒥𝒥±±  are decoupled as 
Φ†

i Φ
†
i ΦjΦk → Φ†

i Φ
†
i χj,k +ΦjΦk(χ0i,i)

∗
+ 2Φ†

i Φjξi,k + 2Φ†
i Φkξi, j , where χ, χ0  

and ξ are mean-field parameters representing intersite pairing, on-site 
pairing and intersublattice hopping, respectively. (2) The bosonic 
matter and dynamical gauge field sectors are decoupled by fixing  
the gauge field to a constant background 𝒜𝒜 → �̄�𝒜, where we pick a gauge 
configuration such that ∇ × �̄�𝒜 = π in the π-flux QSI phase and ∇ × �̄�𝒜 = 0 
in the 0-flux phase. (3) We relax the constraint |Φ†

rΦr| = 1 to the average 
one (⟨Φ†

rΦr⟩ = κ) by performing a large-N approximation. 〈A〉 denotes 
a thermal average, and the constraint is imposed by tuning a Lagrange 
multiplier λ. Here κ = 2 is chosen since such a constraint recovers the 
correct spinon dispersion in the Ising limit and agrees with quantum 
Monte Carlo (QMC) results for the position of the phase transition from 
the 0-flux QSI to an ordered state51,52. Such a choice also agrees with 
QMC and exact diagonalization (ED) for the position of the lower and 
upper edges of the two-spinon continuum for 0-flux and π-flux QSI52. 
It should be emphasized that despite the apparent severity of such 
approximations, GMFT has been extensively benchmarked and shown 
to give worthwhile qualitative agreement with state-of-the-art QMC, 
ED and pseudofermions functional renormalization group52. After such 
approximations, we have a non-interacting quadratic Hamiltonian that 
can be diagonalized exactly. When solving the self-consistency condi-
tions in the relevant parameter regimes, it is found that all the mean- 
field parameters vanish in the deconfined phase (χ = 0, ξ = 0 and χ0 = 0). 
GMFT is, thus, insensitive to 𝒥𝒥±± for the parameter regime of interest. 
Consequently, only 𝒥𝒥|| and 𝒥𝒥± are fitted when comparing with experi-
ments. From this quadratic Hamiltonian, the dynamical spin structure 
factor can be evaluated as that in ref. 52. We emphasize that in our 
modelling, the spinons and photons are effectively decoupled  
such that the spinons are only sensitive to the average background 
π-flux threading the hexagonal plaquettes.

Gaussian quantum electrodynamics
The low-energy physics of the spin-ice manifold can be described by a 
compact U(1) gauge theory

ℋ𝒰𝒰(1) =
𝒰𝒰
2 ∑

⟨r,r′⟩
ℰ2

r,r′−𝒦𝒦∑
h
cos (∇ ×𝒜𝒜)h, (22)

where the second sum is over hexagonal plaquettes. In its deconfined 
phase (that is, for QSI), the low-energy physics of a compact U(1) gauge 
theory can be approximated by

ℋ𝒰𝒰(1) ≈
𝒰𝒰
2 ∑

⟨r,r′⟩
ℰ2

r,r′ +
𝒦𝒦
2 ∑

h
(∇ ×𝒜𝒜)2h. (23)

This quadratic Hamiltonian can be diagonalized to compute the 
dynamical spin structure factor at a finite temperature due to photons, 
as explained in ref. 30. This procedure yields

∫dt∑
i, j

ei(Et+Q⋅(Ri−Rj)) ⟨ℰr1 ,r2 (t) ℰr3 ,r4 (0)⟩

= ζ 2𝒦𝒦
2E (Q) ∑μ

∑
λ
sin (Q ⋅ hμν) sin (Q ⋅ hνλ) [nB (E (Q))δ (E + E (Q))

+ (1 + nB (E (Q)))δ (E − E (Q))] .

(24)

μ, ν, λ ∈ {0, 1, 2, 3} label the four pyrochlore sublattices,  
hμν = a0 (bμ × bν) /(√8 ||bμ × bν||) , where bμ are the vectors connecting an  

up tetrahedron to its four nearest-neighbour down tetrahedra, nB is 
the Bose–Einstein distribution and E(Q) is the photon dispersion. ζ is 
a dimensionless parameter that is meant to take into account any 
renormalization of the electric field when integrating high-energy 
degrees of freedom to derive the above effective field theory. We set 
ζ = 1. Any other choice would affect the relative intensity of the photon 
and spinon contributions and the fitted θ value.

The parameters 𝒰𝒰 and 𝒦𝒦  are related to the speed of the emergent  
light by cQSI = √𝒰𝒰𝒦𝒦a0ℏ−1 . The speed of light fully determines the  
photon dispersion in this description, but the intensity of the dynamical 
spin structure factor depends on the specific ratio of 𝒰𝒰 and 𝒦𝒦  (ref. 30). 
Both 𝒰𝒰 and 𝒦𝒦 , thus, need to be fixed. In the perturbative regime close 
to the Ising point, one can relate 𝒦𝒦  to the perturbative ring exchange 
term obtained by going to the third order in perturbation theory  
(that is, 𝒦𝒦 ∝ 𝒥𝒥3

±/𝒥𝒥2
||) and fix 𝒰𝒰 by using previous QMC results30. However, 

since we are far from this perturbative regime, we make no such 
assumption regarding possible connections between parameters  
of the effective theory and the microscopic couplings of the initial  
spin Hamiltonian. Instead, we fix cQSI and then use the results of ref. 32, 
where the effective ring exchange model of equation (23) was  
studied using large-scale ED simulations. This investigation reports 
that ℏcQSI/a0 = 0.51 (6)𝒦𝒦/2. We, thus, use these results to fix 𝒰𝒰 and 𝒦𝒦  
given cQSI.

Exploration of alternative explanations for the  
quasielastic signal
Thermal spinons. Within GMFT, spinons can also produce a quasi-
elastic signal at finite temperatures. Indeed, at finite temperatures, 
instead of exciting two spinons, a neutron can be scattered by 
de-exciting a thermally excited spinon and exciting another one from 
the vacuum for a net approximately null energy transfer. However, we 
find that this quasielastic signal from thermal spinons is systematically 
much smaller than the inelastic contribution for the experimental 
temperature of T = 50 mK and T = 33 mK (Fig. 1d). It, thus, appears 
implausible that thermal spinons could yield the dominant quasielastic 
signal we report.

A broader spinon continuum. A natural question is whether one can 
fit the whole signal by simply lowering the spinon gap without invoking 
the emergent photon. It should first be noted that in a deconfined phase 
(that is, QSI), the bosonic spinons need to have a finite gap Δspinon. A gap-
less bosonic spinon dispersion would lead to spinon condensation and, 
thus, indicate a transition to a magnetically long-range ordered state. 
INS probes the two-spinon continuum. As such, it is only non-zero for 
energies above the lower edge of the two-spinon continuum 2Δspinon (in 
the non-interacting limit). Suppose only the spinons contribute to the 
dynamical spin structure factor. In that case, we only expect an inelas-
tic signal for which quasielastic contribution would come from the  
leaking of the inelastic contribution due to finite energy resolution (and 
the small contribution from the thermal spinons mentioned above). 
Provided the energy step size in the signal measured is sufficiently small 
compared with the gap, the signal’s maximum should then necessarily 
be for a non-zero energy transfer. This already seems at odds with our 
measurements, where we systematically see the maximum of the total 
magnetic signal Mz + My at (or very close to) the elastic line for the three 
momentum transfers reported in Fig. 2.

Before exploring further, it should also be emphasized that we 
believe GMFT to yield reasonable estimates for the position of the 
two-spinon continuum. Indeed, it gives good agreement for the posi-
tion of the continuum with the QMC results in ref. 28 for 0-QSI and 
the 32-site ED results in ref. 50 for π-QSI (Extended Data Fig. 5). The 
microscopic exchange couplings of Ce2Zr2O7 have already been esti-
mated through a detailed examination of thermodynamics and neutron 
scattering measurements42,49. The GMFT prediction for the spinon con-
tribution to the dynamical spin structure factor using these parameters 
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yields a first peak at approximately 0.05 meV and a second one at 
around 0.1 meV (ref. 52). This is in agreement with our measurements 
and interpretation of the energy scans shown in Fig. 2. Considering both 
agreement for the predicted spinon gap of GMFT, ED and QMC and the 
parameter sets that have been put forward through careful analysis of 
thermodynamic measurements, a spinon peak at much lower energies 
is unlikely. A much lower spinon peak would probably yield predictions 
incompatible with the system’s thermodynamic behaviour.

Nonetheless, we still tried to see if the results could be fitted by a 
spinon signal with a smaller gap without invoking any supplemental 
quasielastic contribution. To this end, we can reduce the position of 
the spinon peak by increasing 𝒥𝒥±/𝒥𝒥∥ and decreasing 𝒥𝒥∥ (Extended Data 
Fig. 6). In particular, using 𝒥𝒥∥ = 0.06 meV and 𝒥𝒥±/𝒥𝒥∥ = −0.35 produces 
a signal for which the first spinon peak is at around 0.03 meV (Extended 
Data Fig. 7). Such a spinon signal systematically fails to capture the 
large contribution at the elastic line. This is especially apparent when 
looking at the residual, in which we clearly see a large signal missed  
at the elastic line. This residual can be accounted for using a Gaussian 
function centred at around E ≈ 0 meV with a width comparable to  
the experimental resolution. This is highly suggestive that there is  
an additional mode near zero energy regardless of any other 
consideration.

In short, it does not seem probable that our measurements can be 
accounted for using a spinon signal with a much smaller gap because 
this would probably be incompatible with the previously established 
thermodynamic behaviour of Ce2Zr2O7. Ignoring these constraints, we 
further find that a spinon-only fit is unable to account for the dominant 
quasielastic signal we report.

Magnetic disorder. Considering the importance that disorder  
can have on the low-energy physics of highly frustrated magnets, one 
could be concerned that the signal might be due to disorder. However, 
the quasielastic signal differs significantly from what is expected of 
conventional magnetic disorder. First, magnetic scattering is expected 
to have very weak wavevector dependence for an impurity-induced 
spin-glass state. For example, in classical spin glass such as Cu1–xMnx 
with x = 0.0165 and x = 0.033, the a.c. susceptibility shows clear hys-
teresis, and the imaginary part of dynamic susceptibility is weakly Q 
dependent and has a broad peak near 2 meV (ref. 65). This is clearly 
different from Ce2Zr2O7 in which there is no frequency-dependent a.c. 
susceptibility and the magnetic scattering is momentum dependent. 
This is especially clear by looking at My in Fig. 3 in which we see strong 
scattering along the First Brillouin zone boundary and a slow decrease 
in intensity for larger values of h in the [h, h, 0] direction. Next, for 
magnetic disorder such as in spin glasses where spin directions are 
randomly frozen in space, one naively expects spin excitations to be 
isotropic in spin space (that is, My ≈ Mz for all Q values). By contrast, 
the quasielastic magnetic scattering from Ce2Zr2O7 is isotropic at 
certain points, but anisotropic with My > Mz at others. This is clear 
from Fig. 3a–c. The spin-space anisotropy is also momentum depend-
ent, thereby giving further support to our previous point about the 
momentum dependence of the quasielastic signal. For these reasons, 
it is quite challenging to reconcile our measurements with magnetic 
disorder. By contrast, our modelling in terms of emergent quantum 
electrodynamics captures the observed momentum and polarization 
dependencies. It is also hard to reconcile how the disorder could be 
significant enough to lead to a dominant quasielastic signal and not 
significantly affect the multiple inelastic spinon peaks, or the cubic 
scaling of the low-temperature heat capacity.

Fits and comparison between theoretical predictions and 
experiments
When comparing experimental and theoretical results, the theoretical 
prediction is convolved with a Gaussian distribution to consider finite 
experimental resolution. For example, when computing the theoretical 

predictions for the momentum scans at the elastic position E = 0 meV 
and E = 0.1 meV, the theoretical predictions are convolved with a Gauss-
ian with the same FWHM as the experimental resolution. We also fix the 
global prefactor C introduced in equation (19) to the one that yields the 
best agreement with experiments. C is chosen consistently between 
the theoretical calculations reported in Figs. 2–4.

To obtain the optimal parameter sets, we minimize the goodness- 
of-fit measure as χ2 = ∑E(I

Theory
E,Q − IExperiment

E,Q )
2
/ΔIExperiment

E,Q  where IExperiment
E,Q  

is the intensity of the signal (that is, Mz + My and Mz − My) measured 
experimentally at energy E for the energy scans at the three different 
momentum points Q presented in Fig. 2 and ΔIExperiment

E,Q  is the associated 
uncertainty. For this fit, we do not fix the width of that Gaussian we 
convolve the results with, but use it as a free parameter to be optimized. 
We allow the FWHM of this broadening function to be within 50%  
of the experimental resolution. Such a fitting procedure yields 
𝒥𝒥𝓍𝓍 = 0.076 mEv  and 𝒥𝒥± = 0.021 mEv . These parameters are approxi-
mately 1.2 times the ones in ref. 42 (that is, the ratio 𝒥𝒥±/𝒥𝒥𝓍𝓍 is the same). 
We find that the goodness of fit is very shallow as a function of cQSI. An 
extended range of values of cQSI and θ yields very reasonable and similar 
fits. In cases where the photon energy for a small cQSI is much smaller 
than the experimental resolution, the photon signal essentially yields 
a Gaussian centred at the elastic position after the convolution proce-
dure outlined above. Therefore, cQSI and θ cannot be uniquely deter-
mined with the energy scans of Fig. 2. We find acceptable agreement 
for ℏcQSI/a0 ∈ [0.0004, 0.0028] meV. The lower bound on the speed  
of emergent light is introduced since, for lower values, the dynamics 
of the two-in–two-out manifold should be completely classical. For 
every speed of light in this interval, we determine an optimal θ by 
requiring that the ratio of the spinon and photon signals remains con-
sistent. These optimal values of θ are in the range [0.05π, 0.12π].

To determine the optimal speed of light within the above parameter  
range, we fit the elastic scans of My and Mz presented in Fig. 3 using a simi-

larly defined goodness of fit as χ2 = ∑Q(I
Theory
E=0,Q − IExperiment

E=0,Q )
2
/ΔIExperiment

E=0,Q ,  

where IExperiment
E=0,Q  is now the intensity of the elastic signal (that is, My and 

Mz at E = 0 ± 0.03 meV) measured experimentally at the momentum 
transfer Q. The optimal speed of light saturates the upper bound 
defined from fitting the energy scans of Fig. 2 such that ℏcQSI/a0 =  
0.0028 meV. If we do not impose the above upper bound on cQSI, we 
find that the goodness of fit for the elastic scan monotonically 
decreases with the speed of light up to about ℏcQSI/a0 ≈ 0.003 meV. In 
summary, the optimal speed of light consistent with the energy scans 
presented in Fig. 2 and the elastic momentum scans of Fig. 3 is 
0.0028 meV. The corresponding value of the angle is θ = 0.12π.

Of all the parameters we estimate, θ is the most uncertain since it 
relies on a quantitative comparison between the dynamical spin struc-
ture factor obtained by GMFT and Gaussian quantum electrodynamics. 
It remains unclear to what extent this quantitative comparison between 
the two is accurate. The main point of the theoretical fit is not to offer 
a quantitative estimate of θ, but rather to reproduce the experimental 
results using a small value of θ as well as 𝒥𝒥x  and 𝒥𝒥± that are reasonably 
consistent with previous work42,49. Furthermore, it should be mentioned 
that previous QMC investigations on 0-flux QSI at small (that is, 
T < 12𝒥𝒥3

±/𝒥𝒥2
|| ) and intermediate (that is, 12𝒥𝒥3

±/𝒥𝒥2
|| < T < 𝒥𝒥||/2 ) tempera-

tures found that the photon contribution to the dynamical spin struc-
ture factor is about one to four orders of magnitude larger than the 
inelastic spinon contribution28. Such intensity ratios between the 
spinon and photon contributions are consistent with our modelling. 
The estimated θ should, thus, be of the right order of magnitude.

Specific heat measurements and data evaluation
Specific heat measurements were performed in a cryogen-free  
dilution refrigerator (CF-CS110-1000M-2PT) from Leiden Cryogenics 
using relaxation calorimetry. The setup is shown in Extended Data 
Fig. 9a. It consists of a Ag frame and a Ag sample stage suspended by 
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superconducting NbTi wires, which also serve as electrical leads to the 
thermometer and heater, thermally insulating them from the bath. All 
electrical connections to the frame were made via two-component 
Ag epoxy (Polytec EC101). The thermal link to the bath is provided 
via a 50-µm Au wire that is spot-welded to the sample platform and 
glued with Ag paint (DuPont 4929N) to the frame. The thermometer 
and heater are 1.58-kΩ and 1-kΩ RuO2 chip resistors, respectively. To 
improve thermalization, the tin substrate of the thermometer chip 
was removed with hydrochloric acid and the bare RuO2 film was then 
glued on sheets of 25-µm Ag foil using Ag epoxy to increase the ther-
mal contact area. The heater chip was prepared in a similar way with 
the exception that a prior removal of the Au substrate was not neces-
sary in this case. Both chips were contacted with NbTi wires that were 
spot-welded to the respective Ag foils and subsequently secured with 
Ag epoxy. These devices were then glued to the back of the sample 
stage using GE varnish with a thin insulating layer of cigarette paper 
in between (Extended Data Fig. 9a,b). Both were calibrated against the 
mixing-chamber thermometer before the measurements. To improve 
the reproducibility of calibration, the chip resistors were first ther-
mally cycled several tens of times between room temperature and 
liquid-nitrogen temperatures.

The resistance of the thermometers was measured using a  
Lakeshore LS370 resistance bridge with an excitation current between 
3.16 nA and 10 nA depending on the temperature. The current for the 
heater was generated by a Yokagawa GS200 d.c. current source and the 
applied heating power was monitored by measuring the preamplified 
(NF Corporation SA-410F3 low-noise differential amplifier) heater volt-
age with a PicoScope 5000 Series USB oscilloscope.

A sample from the same batch as that used in the neutron scatter-
ing investigation was polished to a platelet with a thickness of about 
180 µm and a mass of (3.3 ± 0.1) mg using 2,400-grit and 4,000-grit sand 
paper and a lapping tool. The sample was mounted on the platform 
with a small amount of Ag paint, which is expected to have a negligibly 
small addenda contribution.

The addenda of the empty platform were determined before the 
actual measurements and amount to between 0.14 µJ K–1 and 0.43 µJ K–1 
in the relevant temperature range. The addenda contribution to the 
total heat capacity with the mounted sample was at a maximum of 44% 
at the lowest temperature and less than 6% at 100 mK. The addenda as 
measured before the sample measurement and the ones determined in 
the fits described below have very similar temperature dependencies.

The data obtained with the sample mounted were evaluated using 
the relaxation method, as described elsewhere66. The total heat capac-
ity, the addenda heat capacity and the relevant thermal links were 
determined by fitting the relaxation curves on heating the sample 
(ton ≤ t ≤ toff, where ton and toff are the time at which the constant heating 
power was turned on and off, respectively) with a double-exponential 
decay. This two-tau model is required due to the finite thermal conduct-
ance between the sample and the addenda, as well as the expected low 
thermal conductivity of the sample itself. The error in our specific heat 
data is estimated to be at a maximum of 10% at 100 mK and up to 20% 
at the lowest temperatures. We also estimate a maximum error in the 
temperature of the sample, which amounts to 10% on average (depend-
ing on whether a larger or smaller heater power was used). The error 
bars are shown in the figures discussed below.

The data compare well with the published results (Extended Data 
Fig. 9d,e), particularly for measurements on single crystals39,42. The 
data in ref. 67 were measured on a powder and show somewhat larger 
deviations, as expected. As usual, scaled temperature dependencies 
show higher reproducibility between measurements done with dif-
ferent setups than absolute values. Deviations in the latter can arise 
from uncertainties in the determination of the sample mass, small 
sample composition differences between samples of different groups 
or batches, surface or oxidation effects, and minor systematic errors 
associated with the different setups and evaluation methods. To limit 

the effect of these absolute value errors, we took the average of the two 
previous single-crystal datasets39,42, both measured using commercial 
devices, at a ‘standard’ temperature of 100 mK (Extended Data Fig. 9b, 
star), and scale all the datasets to this value at 100 mK. We assume that 
this produces the most accurate absolute values. The scaling factor is 
1.125 for our measurements, 1.025 for the data from ref. 39 and 0.965 
for the data from ref. 42. This plot shows that in the overlapping tem-
perature range, the temperature dependence of our data is in excellent 
agreement with the ones on single crystals determined previously39,42. 
At higher temperatures, deviations between those two single-crystal 
measurements reach up to 43%.

At the lowest temperatures, the data are well described by a cubic 
temperature dependence, as seen by the fit C = BT3 (straight line with 
a slope of 3 in the double-logarithmic plot), with B = (7,601 ± 397)  
J molCe

–1 K−4. When fitting the data below 50 mK with an open power, the 
fit yields the same power of 3 within the error bars (see the ‘Quality of fits 
to the specific heat data’ section). This temperature dependence is well 
known for acoustic phonons in the Debye model. However, phonons  
can be firmly ruled out as the source of this dependence here, as the 
following estimates demonstrate. Assuming a Debye temperature of 
260 K (ref. 68), we calculate a phonon specific heat of 0.6 mJ molCe

–1 K–1 
at 100 mK, which is less than 0.1% of our data at this temperature. 
Inversely, using the slope of the experimentally determined T3 depend-
ence (Extended Data Fig. 9f) in a Debye model, we obtain a Debye tem-
perature of 1.4 K, which is unphysically small. This is further supported 
by the measurements of the non-f electron reference material La2Zr2O7, 
the specific heat of which is negligibly small below 10 K (refs. 39,42). As 
the phonon contribution is negligible in the temperature range of our 
measurements, there is no need to subtract any phonon contribution 
and the entire measured specific heat can be identified as the magnetic 
contribution Cmag (Fig. 5). The cubic temperature dependence of the 
low-temperature specific heat must, thus, have another origin, and we 
associate it with the ‘photons’ of the QSI state discussed in the main text. 
The velocity of the emergent photons is related to the prefactor B via

B = (R̄π2)/60( kBa0ℏcQSI
)
3

, (25)

where R̄ is the universal gas constant, kB is the Boltzmann constant and 
a0 is the lattice parameter (ref. 30 shows the result quoted per mole of 
the formula unit R2M2O7). This results in a velocity of cQSI = 7.9 ± 0.4 m s–1 
(that is, ℏcQSI/a0 = 0.0049 ± 0.0002 meV).

We also determine the entropy release as a function of temperature 
(Extended Data Fig. 9h) by integrating our Cmag/T data together with 
the data from ref. 39, both scaled as described above, and extended at 
temperatures below the measurement range by the T3 fit and at tem-
peratures above the measurement range of ref. 39 by the data from  
ref. 42 scaled to the data from ref. 39. These extensions are done for 
completeness but have minimal influence. The entropy reaches a value 
of 0.89R̄ln2 near 10 K. Within the error bars of our new measurements 
(Extended Data Fig. 9d–h) and an estimated error of 7% on the (scaled) 
data from ref. 39, the full entropy is reached near 10 K. Thus, within the 
accuracy of all the specific heat measurements available so far, no 
evidence for a deviation from the full entropy of R̄ln2 can be claimed.

Quality of fits to the specific heat data
The quality of fits to the specific heat data is evaluated via the chi-square 
coefficient of the fits to the data below 50 mK, using the method of 
orthogonal distance regression. The use of orthogonal distance regres-
sion is well suited in this case, given the presence of measurement 
errors in both absolute value of heat capacity and the sample tempera-
ture. Although the T3 behaviour is observed in a somewhat narrow tem-
perature range, the evidence for this dependence is robust because the 
specific heat changes strongly (by almost two orders of magnitude) in 
this temperature range and a large number of data points are available.
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Assuming a power-law dependence ATα, the exponent α is well 
defined (Extended Data Fig. 9f). The power that minimizes the devia-
tion is 3.2 ± 0.2 and, thus, α = 3 within small error bars. The optimal 
reduced chi-square coefficient is less than one, indicating an excellent 
fit quality. In Extended Data Fig. 9f, we also show fits using α = 2.5 and 
α = 3.5. Despite the slight departure change in the exponent, substantial 
deviations from the measured data are noticed, illustrating that α = 3 
is the best description of the data.

In Extended Data Fig. 9g, we show that the low-temperature data 
can alternatively be accounted for by thermally activated behaviour, 
Aexp(−Δ/T), with a gap Δ = (0.100 ± 0.006) K. This yields an optimal 
reduced chi-square coefficient comparable with that obtained using 
a power law. From a purely statistical point of view, we, thus, cannot 
discriminate between the two behaviours.

However, physical arguments can be made in favour of the power- 
law interpretation, particularly when trying to discriminate between 
the two competing scenarios: (1) that Ce2Zr2O7 is a frustrated magnet 
dominated by disorder such that the observed low-energy signal is due 
to disorder or (2) that Ce2Zr2O7 realizes QSI with the low-energy signal 
coming from emergent photons. A thermally activated behaviour is 
incompatible with both scenarios. A frustrated magnet dominated 
by disorder should have a low-temperature heat capacity that scales 
as a power law. For instance, in spin glasses, a linear scaling of the heat  
capacity C(T) ∝ T is theoretically predicted to arise due to tunnelling 
between pairs of local energy minima, separated by random potential 
barriers69. Experimentally, a power law (C(T) ∝ Tα, 1 ≤ α ≤ 2) is gener-
ally observed in spin glasses and disordered geometrically frustrated 
magnets70–72. In the case of QSI, the low-temperature heat capacity  
should scale cubically since the gapless photon dominates the signal  
over the thermally activated contributions from the gapped excitations.

In summary, although direct fits to the data do not allow statisti-
cal differentiation between a cubic scaling and a thermally activated 
behaviour with a small gap of about 0.1 K, the thermally activated 
behaviour does not appear physically relevant because neither of the 
two competing interpretations of the neutron data discussed in this 
work can be reconciled with such a behaviour (of course, we cannot rule 
out that other—yet unknown—mechanisms would yield an exponential 
behaviour). Furthermore, a spin gap of 0.1 K (about 0.009 meV) is not 
compatible with the observed magnetic excitation spectra of Fig. 2n. 
Despite the relatively narrow temperature range, we can, therefore, 
conclude, with good confidence, that a cubic scaling behaviour is the 
accurate description of the low-temperature specific heat data.

Data availability
The data presented in the article are available from the corresponding 
authors upon request.
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Extended Data Fig. 1 | Pictures of samples. a, One piece of single-crystalline 
Ce2Zr2O7 was mounted on a copper holder. b, The X-ray Laue pattern in the [0, 0, 1]  
direction. The sample is mounted inside a dilution refrigerator maintained at 

T = 50 mK for the entire experiment. The sample is tied inside copper foils to 
ensure good thermalization at 50 mK (sample 1). c, d show pictures of sample 2 
and its Laue pattern, respectively.
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Extended Data Fig. 2 | Raw data of energy scans. a-c, The energy scan of 
σNSFx (QQQ, E) channel at QQQ = (0,0, 1) , (3/4, 3/4,0) and (1, 1,0) using Ef = 3.23, 3.23, 
and 2.52 meV, respectively, measured on sample 1. We use the Gaussian fit to 
determine the energy resolution to be 0.076 meV, 0.062 meV, and 0.042 meV in 
FWHM, respectively. d, The energy scan of σNSFx (QQQ, E) channel at QQQ = (0,0, 1) 

using Ef = 2.52 meV on sample 2, which has an energy resolution of 0.035 meV in 
FWHM. The curve is shown as the solid black line in Fig. 2n. e, Similar energy scan 
using Ef = 3.23 meV on sample 2, which gives an energy resolution of 0.052 meV 
in FWHM. The vertical error bars in a–e are statistical errors of 1 standard 
deviation.
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Extended Data Fig. 3 | Raw data of energy scans. a-f, Comparison of the 
polarized NSF neutron scattering cross sections σNSFx (QQQ, E) and SF neutron 
scattering cross sections σSFx,y,z(QQQ, E) (a-c) and σSFx,y(QQQ, E) (d-f) at E = 0 ± 0.03 meV 
along the [0, 0, l], [h, h, 1], [h, h, 0], [h, h, 0.25], [h, h, 0.5] and [h, h, 0.75] directions. 
σNSFx (QQQ, E) > σSFx,y,z(QQQ, E) at all QQQ points in the scattering plane. g-h, Comparison of 

the polarized σNSFx (QQQ, E) and σSFx,y,z(QQQ, E) at E = 0.1 ± 0.03 meV along the [0, 0, l] and 
[h, h, 0] directions. σNSFx (QQQ, E) < σSFx,y,z(QQQ, E) at most QQQ points in the scattering 
plane. Gray windows in panels b, c & h indicate nuclear Bragg peaks at (1, 1, 1) and 
(2, 2, 0) points, respectively. Data are obtained with Ef = 3.23 meV. The vertical 
error bars in a–h are statistical errors of 1 standard deviation.
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Extended Data Fig. 4 | Unpolarized neutron scattering data. a,b, The raw 
scattering intensity at 35 mK and 12 K using Ei = 1.55 meV at the elastic line 
(E = 0 ± 0.03 meV) from our previous unpolarized neutron scattering experiment 
at CNCS17. c,d, The comparison of raw scattering intensity at 35 mK and 12 K along 
the [0, 0, l] and [h, h, 0] directions from cuts using panel a. As one can see, the 

scattering is highly structured and the scattering has higher intensity at 12 K at 
almost all QQQ space probed. e,f, Inelastic scattering signals obtained at 35 mK by 
subtracting 12 K as background along the (h, h, 0) and (0, 0, l) directions from our 
previous unpolarized INS experiment at CNCS17 and the corresponding Gaussian 
fits. The vertical error bars in c-f are statistical errors of 1 standard deviation.
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Extended Data Fig. 5 | Theoretical calculations. Predictions from GMFT for the 
width of the two-spinon continuum as a function of transverse coupling for a, 
0-flux QSI and b, π-flux QSI. We compare these with QMC results of Ref. 47 and 

the 32-site ED results of Ref. 29 extracted from the transverse dynamical spin 
structure factor S± (QQQ, E) for 0- and π-flux QSI, respectively. The dashed and 
dashed-dotted lines denote the parameter sets obtained in Refs. 28,20.
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Extended Data Fig. 6 | Comparison of theory and data. a-c, Total magnetic 
scattering Mz +My as a function of energy and theoretical prediction for the 
spinon contribution using 𝒥𝒥∥ = 0.06 meV and 𝒥𝒥±/𝒥𝒥∥ = −0.35 at QQQ = (0,0, 1)  
(X point), QQQ = (3/4, 3/4,0) (K point), and QQQ = (1, 1,0). The theoretical results  
are broadened using a Gaussian with a FWHM of 0.076 meV, 0.062 meV, and 

0.042 meV at the X, K and QQQ = (1, 1,0) point, respectively. d-f, Residual of the fit 
using only the spinons. The residual is fitted at all three momentum transfers 
using a Gaussian function centered close to the elastic line. The vertical error bars 
are propagating errors using Eq. (3).
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Extended Data Fig. 7 | Comparison of theory and data. a-i, The energy scan of pure magnetic components Mz +My, Mz, and My at QQQ = (0,0, 1) , (3/4, 3/4,0) and 
(1, 1,0). We use the Gaussian fit to determine the relative shift of the signals compared with the elastic line. The vertical error bars are propagating errors using Eq. (3).
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Extended Data Fig. 8 | Raw data of high resolution measurements. a, The raw 
energy scan around the elastic line of the second sample at QQQ = (0,0, 1) using the 
same setup as the first sample, Ef = 3.23 meV. b, The raw data of the polarized 

σNSFx (QQQ, E) and σSFx,y(QQQ, E) at E = 0 ± 0.02 meV using Ef = 3.23 meV along the [0, 0, l] 
direction. The vertical error bars represent statistical errors of 1 standard 
deviation.
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Extended Data Fig. 9 | Summary of heat capacity measurements. a Top view of 
the sample holder for specific heat measurements, showing the silver sample 
stage suspended by NbTi wires from the silver frame that was directly screwed to 
the mixing chamber of the cryostat, as well as the gold wire serving as thermal 
link to the bath. b Bottom view of the sample holder showing the thermometer 
(left) and heater (right) chips that are glued to the sample stage with GE varnish.  
c Single-crystalline sample of Ce2Zr2O7 used for specific heat measurements.  
d Comparison of the specific heat data of Ce2Zr2O7 obtained in this work with 
published results39,42,67. The grey line is a guide to the eyes. e Same data as in a, 
except for the data measured on powder down to only 0.4 K67, rescaled to the 
average of the data points of Smith et al.42 and Gao et al.39 at 100 mK, which is 
deemed to be the most precise estimate of the absolute magnitude of the specific 
heat of Ce2Zr2O7 at this temperature. The grey line is a cubic-in-temperature fit to 
data below 50 mK. f Magnetic specific heat data on Ce2Zr2O7 as a function of 
temperature on double-logarithmic scales, compared to power-law fits, ATα, 
with fixed powers α  of 3 (grey), and 2.5 (red) and 3.5 (blue) for comparison, 

illustrating that α = 3 describes the data best. A minimization procedure with 
open α yields the χ2v(α) dependence shown in the inset, confirming that, within 
the error bars, α = 3 is the best description of the data. g Arrhenius plot of the 
magnetic specific heat together with a linear fit to the data (grey line), showing 
that the low-temperature specific heat of Ce2Zr2O7 could also be accounted for by 
a thermally activated behavior, with a gap of 0.1 K (inset). Both fits yield similar 
minimal χ2v, preventing discrimination between the two on purely statistical 
grounds. h Magnetic entropy release as function of temperature obtained by 
integrating our Cmag/T data (full black symbols) together with previously 
published Cmag/T data39 (open symbols), both scaled as done in e. Within the error 
of the measurements, the full entropy of R̄ln2 is reached at 10 K (grey shaded 
area). The vertical error bars in d-g are estimated to be at a maximum 10 % at 
100 mK and up to 20 % at the lowest temperatures. Horizontal error bars 
represent maximal errors in the temperatures of the sample, which amount  
to 10 % on average (depending on whether a larger or smaller heater power  
was used).
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